I’ve recently been working on a Data Warehouse project that I am trying to do in an Agile way. Unlike Agile Software Development, Agile Data projects have some complexities that cause you to adapt the common Agile methods and practices. I am a big fan of User Story Mapping and creating a User Story Map to guide your development of an application and to create and prioritize your backlog. But I have felt that a Data Model tends to not allow stories to be sliced as thinly as application functionality. In many cases a group of tables must be taken together to make any sense at all. Unlike application components that can be segmented easier, it sometimes is quite difficult to segment a data model into parts that can be worked on independently.
I have been involved in other Data Modelling projects where intense analysis was done to try to understand all the intricacies of the data before the application development started. This analysis sometimes lasted 3 months, 6 months, or even years. It goes without saying that this is not an efficient was to organize a project.
If you try to segment application user stories, individual reports, and data requirements as stories they end up being a bit too fine-grained from database point of view. Creating a data model from a single user story or report can lead to a data model that has to undergo a great amount of re-factoring as new user stories, reports, and data requirements are considered. Frequently a new user story that enhances application functionality requires an entirely different data model. 😦
Then I started to think that this can happen to most Agile projects. They slice the User Stories thin from an application point of view and that works as the application components can be somewhat independent, but what happens when you try to line-up the data components?
I am sure this impedance has led to the more drastic database re-factoring that has caused it to have a bad reputation and caused people to write books on the subject.
Epiphany
Then it hit me. Although the User Story Mapping exercise does allow for an end to end view of the application that can then be iterated on, it does not create an end-to-end view of the Data Model or the Data Domain. In fact, some critical components of the Data Model may not be encountered until much later. This can cause significant rework based upon the design that has been done earlier.
So what could be the solution?
Agile Enterprise Data Model
An Agile Enterprise Data Model is a thin data model of the Data Domain that can be done as a two-week technical spike. This Agile Enterprise Data Model provides a User Story Map for the data. It provides a Data Model with placeholders for discussion and further refinement. The concept it not to do detailed Data Modelling but to understand all the data components at a high level that will need to be considered by the project. Used in conjunction with a User Story Map, it can be a valuable tool to allow the application and data model to be worked on in true iterations.
Typically an Agile Enterprise Data Model is a conceptual data model with 20-30 entities. There are minimal attributes and discussion and understanding revolves more around entities and relationships than anything. The Agile Enterprise Data Model can then be refined to create the application database, Operational Data Store, and Data Warehouse.
Summary
I have used the Agile Enterprise Data Model with very good success. It also works best in a Data Domain you are unfamiliar with as it allows you to understand a Data Domain holistically initially and then deliver in iterations. The best of both worlds.